Угол В=90, т.к. опирается на диаметр АС, треугольник АВС прямоугольный , ВС лежит напротив угла 30 и = 1/2 гипотенузы АВ. АВ = 2 х ВС = 2 х 4 =8, радиус = АВ/2=4 АВ = корень (АС в квадрате - ВС в квадрате) = корень (64 - 16) = 4 х корень3 Площадь треугольника = 1/2АВ х ВС = 1/2 х 4 х корень3 х 4 =8 х корень3 Площадь круга = пи х радиус в квадрате = пи х 16 Площадь заштрихованной = площадь круга - площадь треугольника = 16 х пи - 8 х корень3, если все перевести в цифры = 16 х 3,14 - 8 х 1,73 = 36,4 за правильность не ручаюсь.
Дан треугольник ABC. Плоскость, параллельная прямой AB, пересекает сторону AC этого треугольника в точке A1, а сторону BC в точке B1. Найдите длину отрезка A1B1, если AB = 15 см, а AA1: AC = 2: 3. ------- Плоскость треугольника АВС пересекается с плоскостью. параллельной по условию стороне АВ. Если прямая параллельна плоскости и содержится в другой плоскости, пересекающей первую, то она параллельна линии пересечения этих плоскостей. Отрезок А1В1- часть линии пересечения данной плоскости и плоскости треугольника АВС. Следовательно, А1В1 || АВ. АС и ВС - секущие при параллельных прямых, отсюда треугольники А1СВ1 и АСВ - подобны. Из их подобия следует отношение А1В1:АВ=2:3 А1В1:15=2:3 3 А1В1=30 А1В1=10 см