Самостоятельная работа как средство и условия развития познавательной деятельности
В данной статье рассматривается вопрос о значимости самостоятельной работы студентов в учебном процессе.
Самостоятельная работа необходима для развития познавательной творческой деятельности студентов, а также овладения знаниями и добывания информации для выполнения заданий.
Целью самостоятельной работы студентов является овладение методами получения новых знаний, приобретение навыков самостоятельного анализа социальных явлений и процессов, усиление научных основ практической деятельности.
А также при отборе видов самостоятельной работы, при определении ее объема и содержания следует руководствоваться, как и во всем процессе обучения, основными принципами. Наиболее важное значение в этом деле имеют принцип доступности и систематичности, связь теории с практикой, принцип постепенности в нарастании трудностей, принцип творческой активности, а также принцип дифференцированного подхода к студентам. Применение этих принципов к руководству самостоятельной работой имеет особенности.
Современное общество ставит перед высшей школой задачу подготовки специалиста знающего, мыслящего, умеющего самостоятельно добывать и применять знания на практике. Решение этой задачи осуществляется через поиск содержания, форм, методов и средств обучения, обеспечивающих более широкие возможности развития, саморазвития и самореализации личности. В связи с этим особую актуальность приобретает проблема овладения студентами методами познавательной деятельности в условиях самостоятельной работы.
Актуальность проблемы овладения студентами методами самостоятельной познавательной деятельности обусловлена тем, что в период обучения в вузе закладываются основы профессионализма, формируются умения самостоятельной профессиональной деятельности. В этой связи особенно важно, чтобы студенты, овладевая знаниями и их добывания, осознавали, что самостоятельная работа призвана завершать задачи всех других видов учебной работы, ибо никакие знания, не ставшие объектом собственной деятельности, не могут считаться подлинным достоянием личности.
б) Найдите угол между этой плоскостью и плоскостью основания АВС.
Продлим отрезки КМ и KL до пересечения с плоскостью АВС. Для этого достаточно продлить стороны АС и АВ.
Точки пресечения - это Д и Е.
Примем длину отрезка АК за 1.
Из треугольника АКД отрезок АД = 1 / tg 60 = 1 / √3.
Аналогично АЕ = 1 / tg 45 = = 1 / 1 = 1.
Угол ЕАД равен 60 градусов (по заданию).
По теореме косинусов
Находим гипотенузы в треугольниках АКД и АКЕ.
КЕ = √(1²+1²) = √2 (острые углы по 45 градусов).
Теперь определены 3 стороны в треугольнике КЕД, угол наклона которого к плоскости АВС надо найти.
Для этого двугранный угол между основой и треугольником КДЕ надо рассечь плоскостью, перпендикулярной их линии пересечения ЕД.
Находим высоты в треугольниках АЕД и КЕД по формуле:
АЕ ДЕ АД p 2p S =
1 0.8694729 0.5773503 1.2234116 2.446823135 0.25
haе hде hад
0.5 0.57506 0.86603
КЕ ДЕ КД p 2p S =
1.4142136 0.869473 1.154701 1.719194 3.43839 0.501492
hке hде hкд
0.7092 1.15356 0.86861.
Отношение высот hде и hде - это косинус искомого угла:
cos α = 0.57506 / 1.15356 = 0.498510913.
ответ: α = 1.048916149 радиан = 60.09846842°.