Искомый отрезок лежит на средней линии трапеции, которая проходит через середины диагоналей. Боковые отрезки средней линии - средние линии треугольников, основанием которых является меньшее основание. Их два, каждый равен половине меньшего основания, а вместе - длине всего меньшего основания. Поэтому длина отрезка, соединяющего середины диагоналей трапеции, равна разности между средней линией трапеции и длиной меньшего основания. Средняя линия трапеции (9+4):2=6,5 Длина отрезка, соединяющего середины диагоналей трапеции 6,5-4=2,5 См. рисунок. ------ [email protected]
Искомый отрезок лежит на средней линии трапеции, которая проходит через середины диагоналей. Боковые отрезки средней линии - средние линии треугольников, основанием которых является меньшее основание. Их два, каждый равен половине меньшего основания, а вместе - длине всего меньшего основания. Поэтому длина отрезка, соединяющего середины диагоналей трапеции, равна разности между средней линией трапеции и длиной меньшего основания. Средняя линия трапеции (9+4):2=6,5 Длина отрезка, соединяющего середины диагоналей трапеции 6,5-4=2,5 См. рисунок. ------ [email protected]
здесь можно воспользоваться теоремой:
Биссектриса треугольника делит сторону, к которой она проведена, на отрезки, пропорциональные прилежащим сторонам треугольника.
9 : 7 = AB : BM
9/7 = AB : (BC/2)
9/7 = 2AB : BC
9/14 = AB : BC
BC : AB = 14/9