Билет № 3 3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника. Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12 S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4 3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника. Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4. В соответствии со свойством касательных, проведенных из одной точки к окружности AM=AK CK=CN BM=BN P=3+3+4+4+3+3=20
Берешь угол. Вершина угла - точка А. На одном из лучей откладываешь длину гипотенузы. Получаешь точку В. А затем из точки В опускаешь перпендикуляр на другой луч. Получаешь точку С - вершину прямого угла. Чтобы опустить перпендикуляр из точки (номер 1, в нашем случае - это точка B) на прямую, надо поставить острие циркуля в эту точку и произвольным одинаковым раствором циркуля (явно большим расстояния от точки до прямой) сделать две засечки на этой прямой, получишь две точки пересечения (номер 2 и номер 3), а затем, ставя поочередно в эти точки острие циркуля одинаковым раствором циркуля (не обязательно равным первоначальному, но явно большему половины длины отрезка между точками 2 и 3, а лучше просто не менять раствор циркуля) провести две дуги до их пересечения на другой стороне прямой (а если поменять раствор циркуля, то можно провести две дуги до пересечения и на той же стороне прямой, где была точка номер 1). Получишь четвертую точку - точку пересечения дуг. Соедини первую точку с четвертой до пересечения с прямой, если они по разные стороны от прямой, или продли линию до пересечения с прямой, если точки 1 и 4 находятся по одну сторону от прямой. Эта линия и будет перпендикуляром, опущенным из первой точки на данную прямую. А точка пересечения перпендикуляра с прямой и будет точкой С нашего треугольника.
3. В окружность вписан треугольник ABC так, что АВ - диаметр окружности. Найдите углы треугольника, если: а) ВС=134°
АВ - диаметр - > < C=90 < A=67 (вписанный угол) < B=180-90-67=23
Билет № 3
3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12
S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4
3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника.
Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4.
В соответствии со свойством касательных, проведенных из одной точки к окружности
AM=AK CK=CN BM=BN
P=3+3+4+4+3+3=20