1. Z1 + <2 = 180° как внутренние
односторонние углы при пересечении
параллельных прямых а и b секущей с.
Z2 - Z1 = 34º по условию,
Сложив два равенства, получаем:
2 42 214°
42 = 214° : 2 = 107⁰,
41107-34° = 73°.
Z3 = Z1= 73° как соответственные углы
при пересечении параллельных прямых
a и b секущей с.
2. ZABC = ZDCB = 37° как
накрест лежищие при пересечении
параллельных прямых DC и АВ секущей
BC.
Сумма острых углов прямоугольного
треугольника равна 90°:
ZBAC = 90° - ZABC = 90° - 37° = 53°
Объяснение:
новерно правильно
ответ: в)
тр. BCD равнобедренный, значит углы при основании равны, (180-90)/2= 45
Значит <B=90+45=135
<BDA=90-45=45
Значит <BAD=90-45=45
Итого:
<A=45
<B=135
<C=90
<D=45
синусы и т.д., вычисляй.
Для б)
ABCD - параллелограмм, т.к. BC равна и параллельна AD.
Обрати внимание, что в прямоугольном тр.ке BOC, одна сторона (катет OC), в два раза меньше гипотенузы BC. Это значит, что этот катет лежит напротив угла 30. Т.е., <OBC=30
<ODA =<OBC (как внутренние накрест лежащие) =30
Значит, в прямоугольном тр.ке AOD, OD (лежит напротив угла 30) равна тоже 1 (в два раза меньше гипотенузы AD).
Теперь видно, что тр. ABO равен тр. OBC (по двум сторонам и углу между ними (90)).
Значит < B = 30*2=60
Итак:
<B=<D=60
<A=<C=(360-60-60):2=120
Объяснение: