Проведем МА⊥α и МВ⊥β. МА = 12 - расстояние от М до α, МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С. МА⊥α, а⊂α, значит МА⊥а. МВ⊥β, а⊂β, значит МВ⊥а. Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒ а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла; а⊥МС, ⇒ МС - искомое расстояние.
Задача 1 Сначала проверяем, подобны ли данные треугольники, если они подобны, то соотношение соответственных сторон должно быть правильным, значит: АС/А₁С₁=ВС/В₁С₁ 4/6=12/18 4*18=6*12 72=72 значит треугольники подобны Тогда составляем пропорцию с неизвестной стороной А₁В₁: АВ/АС=А₁В₁/А₁С₁ 10/4=А₁В₁/12 А₁В₁=10*12/4=30
Задача 2 Мы знаем что, площади подобных треугольников относятся как квадраты сходственных сторон., Значит: 18/288=9²/А₁В₁ А₁В₁=288*81/18==36
Задача 3 Рассмотрим треугольники АОВ и ДОС, они подобны по первому признаку (когда два угла одного треугольника соответственно равны двум углам другого треугольника), так как ∠АОВ=∠ДОС как вертикальные, а ∠АВД=∠ВДС как внутренние накрест лежащие (так как АВ параллельно ДС, ведь АВСД трапеция и АВ и СД ее основания) Тогда составляем пропорцию отношения сторон подобных треугольников: ДО/ДС=ОВ/АВ 20/50=8/АВ АВ=50*8/20=20 ответ АВ=20
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений 5²+9²+13²=25+81+169=275
Диагональ прямоугольного параллелепипеда равна √275=5√11
Если в основании 5 и 9, диагональ основания равна √(25+81)=√106, высота 13, тогда площадь диагонального сечения 13√106
Если за основание взять прямоугольник со сторонами 5 и 13, то диагональ основания √(25+169)=√194, искомая площадь 9√194,
Если за основание принять прямоугольник со сторонами 9 и 13, то диагональ основания √(81+169)=√250=5√10, и искомая площадь
5*5√10=25√10