По теореме Пифагора находим на всякий случай катет АС = √10²-8² = 6.
Вспоминаем, что высота проведена к гипотенузе АВ и делит прямоугольный треугольник АВС на два прямоугольных треугольника АDC и ВDС. Они подобны между собой и подобны треугольнику АВС по трем углам.
Из подобия имеем АС/СD = АВ/СВ или 6/СВ = 10/8. Отсюда 10СD = 48, а СD = 4,8.
Из подобия имеем АС/АD = АВ/АС или 6/АD = 10/6. Отсюда 10АD = 36, а АD = 3,6.
Тогда DВ = 10-3,6 = 6,4
Площадь треугольника BCD = 1/2*СD*DB = 1/2*4,8*6,4 = 15,36см²
Площадь треугольника ADC = 1/2*СD*АD = 1/2*4,8*3,6 = 8,64 см²
Проверка:
Площадь треугольника АВС = 1/2*АС*СВ = 24см²
Сумма площадей треугольника BCD и треугольника ADC = 15,36см²+8,64см²=24см²
Дуга ВС = 2 х угол ВАС = 2 х 55 =110
дуга САВ=дуга АС+дугаАВ =360-110=250, что составляет 2=3=5 частей
1 часть = 250/5=50, дуга АВ= 2 х 50 =100, дуга АС = 3 х 50 = 150, угол АОС центральный= дуге АС = 150