М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Милая8
Милая8
06.06.2023 06:11 •  Геометрия

Задача No 3:
Диагонали ромба равны 14 и 18 см. Найти стороны ромб

👇
Ответ:
katy1231231233
katy1231231233
06.06.2023

Площадь ромба равна половине произведения его диагоналей (14*18) / 2

как найти сторону: диагонали точкой пересечения делятся пополам и по теореме Пифагора 7^2+9^2=х^2; х^2=49+81=100

х=√100 = + / - 10 сторона не может быть с отрицательным показателем

Объяснение:

4,4(66 оценок)
Открыть все ответы
Ответ:
Ламинарка
Ламинарка
06.06.2023

в ромбе стороны равны,  диагонали пересекаются по прямым углом. Проведем через  отмеченные точки отрезки. Рассматриваем треугольники, образованные диагоналями и отрезками.

1 - меньшая диагональ: имеем два больших треугольника с основанием диагональю, а в них два меньших с основаниями - отрезками. Треугольники подобны по двум сторонам и углу между ними с коэффициентом подобия 2:5 (3+2=5 - сторона ромба из 5 частей).  Из подобия вытекает, что отрезки параллельны диагонали ромба параллельны между собой.  Большая диагональ перпендикулярна меньшей, а значит и отрезкам параллльеным этой диагонали.

2- большая диагональ - аналогично, коэффициент подобия 3:5.  Отрезки параллельны меньшей диагонали и перпендикулярны  большей. 

Отсюда имеем прямоугольник

4,5(33 оценок)
Ответ:
FannyPanda
FannyPanda
06.06.2023

Даны отрезки

Необходимо построить трапецию ABCD (с основаниями AD и ВС, AD > ВС), такую, что

Допустим, что ABCD — искомая трапеция. Тогда на продолжении AD отложим отрезок DE = b. Следовательно, DBCE — параллелограмм, так как две его стороны ВС и DE параллельны и равны. Поэтому стороны BD и СЕ параллельны и равны:

Рассмотрим

План построения трапеции: 1) На произвольной прямой отложим отрезок AD = а. На продолжении AD отложим отрезок DE = b.

2) Построим

по известным сторонам

3) Через точку С проведем прямую, параллельную АЕ, и на этой прямой от точки С в ту же полуплоскость относительно СЕ, где и точка А, отложим отрезок СВ = b.

4) Получим четырехугольник ABCD. Докажем, что ABCD искомая трапеция.

(по построению). Так как

(по условию), то ABCD не является параллелограммом, а значит, является трапецией с основаниями AD = а, ВС = b (по построению). По построению диагональ

Так как BCED

— параллелограмм (его противоположные стороны ВС и DE по построению параллельны и равны), то

Значит, диагонали АС и BD равны соответственно

и следовательно, ABCD — искомая трапеция. Заметим, что задача имеет решения не всегда, а только в случае если можно построить

со сторонами в

Это возможно тогда и только тогда, когда одна сторона больше разности двух других и меньше суммы двух других, то есть, когда

+ b < d2 + d1. В этом случае

определяется однозначно и задача имеет единственное решение. В других случаях

построить нельзя и задача решений не имеет.

4,6(15 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ