Прямоугольный параллелепипед АВСДФ1В1С1Д1, В1Д=57, СД/АД/В1В=6/10/15=6х/10х/15х, в основании прямоугольник АВСД, ВД в квадрате=АД в квадрате+АВ в квадрате= 100*х в квадрате+36*х в квадрате=136*х в квадрате, трегольникВ1ВД прямоугольный, ВД в квадрате=В1Д в квадрате-В1В в квадрате=3249-225*х в квадрате, 136*х в квадрате=3249-225*х в квадрате, 361*х в квадрате=3249, х=3, АД=10*3=30, СД=6*3=18, В1В=15*3=45, площади оснований=2*АД*СД=2*30*18=960, площадь боковой=периметр основания*высоту=(30+18+30+18)*45=4320, полная площадь=960+4320=5280
Пусть большая сторона равна а, а меньшая равна b. Тогда периметр параллелограмма равен: P = 112 = 2a + 2b Площадь параллелограмма можно считать по любой стороне. Если считаем по большей, то она равна: S = a*12 А если считать по меньшей, то она равна: S = b*30 И в том, и в другом случае результат одинаков, т. е.: a*12 = b*30 Вспомним про предыдущее уравнение: 112 = 2a + 2b Получим два уравнения с двумя неизвестными. Выразим а в последнем уравнении и подставим в первое: a = 56 - b 12*(56 - b) = 30*b 672 - 12b = 30b 672 = 42b b = 16 Ну а теперь найдем площадь: S = 30*b = 30*16 = 480 см. У меня в учебнике наподобие твоей. Это как образец.
Прямоугольный параллелепипед АВСДФ1В1С1Д1, В1Д=57, СД/АД/В1В=6/10/15=6х/10х/15х, в основании прямоугольник АВСД, ВД в квадрате=АД в квадрате+АВ в квадрате= 100*х в квадрате+36*х в квадрате=136*х в квадрате, трегольникВ1ВД прямоугольный, ВД в квадрате=В1Д в квадрате-В1В в квадрате=3249-225*х в квадрате, 136*х в квадрате=3249-225*х в квадрате, 361*х в квадрате=3249, х=3, АД=10*3=30, СД=6*3=18, В1В=15*3=45, площади оснований=2*АД*СД=2*30*18=960, площадь боковой=периметр основания*высоту=(30+18+30+18)*45=4320, полная площадь=960+4320=5280