Найти стороны равнобедренного треугольника АВС, то есть АВ, ВС, АС — ?
Рассмотрим равнобедренный треугольник АВС. У него боковые стороны равны между собой, тогда АВ = ВС.
Пусть длина основания АС = х сантиметрам. тогда длины его боковых сторон АВ = ВС = х + 5 сантиметров. Нам известно, что периметр треугольника АВС равен 37 сантиметров. Составляем уравнение:
Доказательство Пусть дан треугольник ABC . Проведем через вершину B прямую, параллельную прямой AC. Отметим на полученной прямой точку D так, чтобы она лежала в другой полуплоскости относительно прямой BC. ∠ CAB и ∠ ABD – внутренние односторонние углы для параллельных прямых AC и BD с секущей AB, тогда: ∠ CAB + ∠ ABD = 180º ⇒ ∠ ABD = 180º - ∠ CAB ∠ ABD = ∠ ABC + ∠ CBD. Так как ∠ CBD = ∠ ACB как внутренние накрест лежащие, образованные пересечением параллельных прямых BD и AC c секущей BC, то ∠ ABD = ∠ ABC + ∠ ACB Приравниваем ∠ ABD: ∠ ABC + ∠ ACB = 180º - ∠ CAB и ∠ ABC + ∠ ACB + ∠ CAB = 180º . Теорема доказана. ♦
Дано:
равнобедренный треугольник АВС,
АС — основание,
АВ = АС + 5 сантиметров,
Р АВС = 37 сантиметров.
Найти стороны равнобедренного треугольника АВС, то есть АВ, ВС, АС — ?
Рассмотрим равнобедренный треугольник АВС. У него боковые стороны равны между собой, тогда АВ = ВС.
Пусть длина основания АС = х сантиметрам. тогда длины его боковых сторон АВ = ВС = х + 5 сантиметров. Нам известно, что периметр треугольника АВС равен 37 сантиметров. Составляем уравнение:
х + х + 5 + х + 5 = 37;
3 * х + 10 = 37;
3 * х = 37 - 10;
3 * х = 27;
х = 27 : 3;
х = 9 сантиметров — длина основания АС;
9 + 5 = 14 сантиметров — длины сторон АВ и ВС.
ответ: 9 сантиметров; 14 сантиметров; 14 сантиметров.