Объяснение:
АВСД -прямоугольная трапеция ,ВС=4√2 , ∠А=45°, ∠Д=90°, АС-биссектриса ∠А.
1)Т.к АС-биссектриса, то ∠САД=∠САВ.
2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
3)Т.к. ВК⊥АД, то ДК=4√2.
4)ΔДВК-прямоугольный, по т. Пифагора ДВ²=КВ²+КД²,
ДВ²=16+16*2,
ДВ²=3*16
ДВ=4√3
300:4=75, так как стороны ромба равны
2. диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно треугольник АВО - прямоугольный и АО:BO=1,5:2
Пусть х - коэффициент пропорциональности
Тогда по теореме Пифагора
АВ^2=АО^2+BO^2
75^2=(1,5х)^2+(2x)^2
х=30 и х=-30( не подходит, так как значение отрицательное)
тогда диагонали ромба
АС=90 , а BD=120
Площадь ромба
S= 0,5 * АС*ВD=0,5*90*120=5400
с другой стороны площадь ромба
S=АВ*H
5400=75*h, где h - высота
h=5400/75
h=72
ответ 72