Построили на координатной плоскости четыре точки, соединили прямыми линиями и видим, что четырехугольник не только параллелограмм, а даже ромб. Доказательство. Стороны равны - гипотенузы треугольников с равными катетами. Вх-Ах=6-3 = 3 и Сх-Рх= 9-6 = 3 Ву-Ау= 6-4 = 2 и Су-Ру= 4-2 = 2. Стороны параллельны- наклон отрезков одинаков. k1 = ΔY/ΔX = (By-Ay)/(Bx-Ax) = 2/3 - наклон отрезка ВА. k2 = (Cy-Py)/(Cx-Px) = 2/3 - наклон отрезка СР. Аналогично для другой пары отрезков. Настоящий параллелограмм и настоящий ромб. ЧТД - что и требовалось доказать.
Есть формула, по которой можно определить угол правильного n-угольника. Докажем это и с шестиугольником. - угол, n - количество сторон.
120 градусов - величина одного угла в правильном шестиугольнике. Проводим диагонали BF и CF, получаем треугольник FCB. Из соседнего треугольника ABF (он равнобедренный, т.к. AF=AB) найдём углы ABF и BFA . Таким образом, угол . Проводишь треугольник CFD, он равносторонний, все углы по 60. Т.е. угол BCF=60 градусов. Картинку в личке показать могу, если что-то не получится)
координаты вектора АВ(10;-10), т.к. 10-0=10 и -10-0=-10
координаты вектора АС(10;-11), т.к. 10-0=10 и -11-0=-11
координаты вектора АВ+АС(20;-21), т.к 10+10=20 и -10+(-11)=-21
найдем длину АВ+АС √20^2+(-21)^2=√400+441=√841=29
ответ29