Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
Находим sin, cos или tg по основному тригонометрическому тождеству: sin^2a+cos^2a=1 1) cos a =1/3. Найдём sin a по основному тригонометрическому тождеству: sin^2a+cos^2a=1 sin^2a=1-cos^2a=1-(1/3)^2=1-1/9=8/9 sin a=√8/9 (знак корня относится ко всей дроби)=√8/3 (знак корня относится только к числителю)=√4*2/3 (знак корня относится только к числителю, в котором мы разложили число 8 на множители, чтобы извлечь возможные корни, в данном случае можем извлечь корень из 4)=2√2/3 (2√2 - числитель дроби, знак корня относится только к 2). Нашли sin a. Теперь найдём tg a, который равен отношению синуса альфа к косинусу альфа: tg a=sin a/cos a=2√2/3:1/3=2√2/3*3/1 (правило деления двух обыкновенных дробей)=2√2 (тройки сократились при умножении). Таким же образом попробуйте выполнить следующие номера. Надеюсь Если непонятно, пишите в личные сообщения. Удачи.
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).