Определение:Проекция точки на прямую - это или сама точка, если она лежит на прямой, или основание перпендикуляра, опущенного из этой точки на заданную прямую.
Так как А1 и В1 - проекции точек на прямую ребро двугранного угла, то АА1 и ВВ1 перпендикулярны ему.
Грани двугранного угла по условию взаимно перпендикулярны, следовательно, АА1 перпендикулярно плоскости, которой принадлежит т.В, и ВВ1 перпендикулярно плоскости, которой принадлежит т.А.
ВА1В1 прямоугольный.
ВА1=А1В1+ВВ1=36+49=85
Отрезок АА1 перпендикулярен плоскости, которой принадлежит т. В, он перпендикулярен любой прямой, проходящей через его основание А1 (свойство).
Правильный ответ: 90 градусов. Т.к. прямые параллельны, то сумма внутренних односторонних углов равна 180 градусов (назовём их целыми односторонними углами), а сумма односторонних углов, разбитых биссектрисами (нецелых односторонних углов), равна 180 / 2 = 90 (градусов). При пересечении биссектрис образуется треугольник, в котором два угла мы уже определили (они равны по 45 градусов каждый, т.к. 90 / 2 = 45). Осталось определить третий угол образовавшегося треугольника, т.е. угол между биссектрисами внутренних односторонних углов. Он равен: 180 - 90 = 90 (градусов).
Определение:Проекция точки на прямую - это или сама точка, если она лежит на прямой, или основание перпендикуляра, опущенного из этой точки на заданную прямую.
Так как А1 и В1 - проекции точек на прямую ребро двугранного угла, то АА1 и ВВ1 перпендикулярны ему.
Грани двугранного угла по условию взаимно перпендикулярны, следовательно, АА1 перпендикулярно плоскости, которой принадлежит т.В, и ВВ1 перпендикулярно плоскости, которой принадлежит т.А.
ВА1В1 прямоугольный.
ВА1=А1В1+ВВ1=36+49=85
Отрезок АА1 перпендикулярен плоскости, которой принадлежит т. В, он перпендикулярен любой прямой, проходящей через его основание А1 (свойство).
ВАА1 - прямоугольный
По т.Пифагора
АВ=АА1+ВА1=25+85=110
АВ=110