у треугольников AOS, BOS, COS, DOS, одна сторона OS, также равны стороны AO=BO=CO=DO и так как OS перпендикулярна плоскости квадрата, значит OS перпендикулярна всем прямым лежащим в этой плоскости. Таким образом углы AOS, BOS, COS, DOS также равны между собой и равны 90 градусов.
Поэтому треугольники AOS, BOS, COS, DOS равны по правилу равенства двух сторон и угла между ними. А отсюда следует, что углы SAO, SBO, SCO, SDO также равны между собой. Следовательно углы, образуемые прямыми SA, SB, SC,SD с плоскостью квадрата равны между собой.
если периметр квадрата равен 32 см, то сторона квадрата равна 32/4=8 см.
если сторона квадрата равна 8 см, то его диагонали AC и BD равны √(8²+8²)=√(64+64)=8√2 см.
так как в квадрате диагонали точкой пересечения делятся на равные отрезки, то AO=(8√2)/2=4√2 см.
Так как треугольник AOS прямоугольный, то тангенс угла SA равен OS/AO = 4√2 / 4√2 = 1 см.
Если тангенс угла равен 1, то этот угол равен 45 градусов.
Следовательно углы, образуемые прямыми SA, SB, SC,SD с плоскостью квадрата равны 45 градусов.
по теореме косинусов зная угол в 120 градусов найдем основание треугольника:
х" = 36+36-2*36*(-1/2), = 72+36 = √108
так как угол между диагональю большей грани и основанием 60 градусов.
то в прямоугольном треугольника где катет высота призмы и основание треугольника ..высота треугольника равна: cos 30 = h/12√3 (катет лежайщий напротив угла в 30 градусов равен половине гипотенузы, сторона 6√3 лежит напротив этого угла), h = 18
площадь этой грани равна: S1 = 18*6√3 = 108√3.
S полн = 2Sосн + S1 + 2S2
S осн = 6*6*√3/2*2 = 9√3
S2 = 18*6 = 108
S полн = 2*9√3 + 108√3+2*108 = 126√3+216.
SA,SB,SC,SD будут равны только если SO опущен по центру квадрата... а в условии не сказано, что он опущен в центр, а значит углы могут быть разными, и найти эти углы не возможно...
ну а если SO в центре, то...
АВ=32/4=8
АО=корень из(32)=корень(16*2)=4*корень(2)
то есть такой же длинны как и перпендикуляр
а значит углы SA,SB,SC,SD будут равны 45 градусов