Задача имеет решение только если АВСD – четырехугольник, вписанный в окружность. (см. рисунки вложения)
В противном случае величину углов АDC и DCB вычислить невозможно, они могут принимать различное значения, лишь бы их сумма была равна разности между суммой углов четырехугольника и суммой углов АВС и BAD, т.е. 204°
-----------
Четырехугольник можно вписать в окружность, если сумма его противолежащих углов равна 180º.
Тогда ∠ADC=180°-∠ABC=180°-96=84°
∠BCD=180°-∠BAD=180°-60°=120°⇒
∠BCD-∠ADC=120°-84°=36°.
1. снование равно 12,8, так треугольник равнобедренный, а боковая сторона равна 8
2. По признаку о равнобедренном треугольнике, что высота проведенная из вершины угла, является и биссектрисой и медианой, так как высота это медиана, то получается что высота делит треугольник пополам.
3. Мы получили прямоугольный треугольник
По теореме Пифагора находим высоту, то есть:
а^2+в^2=с^2 (где а и в-катеты, а с-гипотенуза)
пусть в-Х,
а=1/2 основная, что равно 6,4
с-боковая сторона, что по условию равно 8
подставим числа
8^2=6,4^2+х^2
64=40,96+х^2
х^2=23,04
х=4,8
ответ: расстоянИе от вершины равно 4,8