На рисунке голубым это картина. Вокруг окантовка. Видно что в две стороны увеличилась и Ширина и длина.
Значит обозначаем окантовка =Х Ширина стала =2х; Длина= стала 2х; Площадь с окантовкой стала=558см^2 S -площадь прямоугольника; a -ширина b -длина; S=a•b; Уравнение (10+2х)•(20+2х)=504 10•20+10•2х+2х•20+2х•2х-504=0 200+20х+40х+4х^2-504=0 4х^2+60х-304=0 Разделим на 2 все 2х^2+30х-152=0 D=b^2-4•a•c= 30^2- 4•2•(-152)= 900-8•(-152)=900+1216=2116 X1,2=(-b+-корень из D)/(2•a); X1=(-30-46)/2•2=-76/4=-19не подходит; Х2=(-30+46)/2•2=16/4=4 см
Медиана равнобедренного треугольника является его высотой и биссектрисой. Т.к. она перпендикулярна основанию и равна его половине, она делит треугольник на два равнобедренных прямоугольных треугольника. Если прямоугольный треугольник равнобедренный, то его острые углы равны и их величина равна 90°:2=45° ( каждый). Углы при основании исходного треугольника равны 45°, а угол при вершине, противоположной основанию, равен 90°.
Отсюда известное свойство прямоугольного треугольника, которое часто применяется в задачах: Медиана прямоугольного треугольника ( любого, необязательно равнобедренного) равна половине гипотенузы.
Так то так.
tg ( A ) = 24 / 12 = 2