Боковая поверхность - 3 трапеции, средняя линяя у каждой из трех - 4;
2 из них - с высотой 1;
грань, "противоположная" ребру длинны 1, - это равнобедренная трапеция, её высоту и надо вычислить, чтобы получить ответ.
проводим "вертикальную" плоскость через ребро 1, делящую основания "пополам" (то есть эта плоскость проходит через высоты оснований пирамиды, выходящие из вершин ребра 1).
сечение пирамиды, которое получится - это трапеция с боковой стороной 1, перпендикулярной основаниям, и основаниями 3*sqrt(3)/2 и 5*sqrt(3)/2. четвертая сторона легко вычисляется, и равна 2. Это и есть высота наклонной грани трапеции (поскольку сечение перпендикулярно основаниям пирамиды);
ответ S = 4*1+4*1+4*2 = 16
Стороны квадрата равны:
ВС=АВ=2Х+23Х=25Х (так как делятся в отношении 2:23)
Отрезки этих сторон (смотри по рисунку):
KР=ВР-ВК=R-2Х.
ВМ=АВ-R=25Х-R=ОР (так как ВМ=ОР - стороны прямоугольника).
Из треугольника ОКР по Пифагору:
R²=KP²+OP².
R²=(R-2Х)²+(25Х-R)².
R²=R²-4RХ+4X²+625Х²-50RX+R².
0=R²-54RХ+629Х².
629Х²-54RХ+R²=0
Дискриминант этого квадратного уравнения: D=729R²-629R²=100R².
А его корни равны:
X1=(27R+10R)/629=37R/629.
X2=(27R-10R)/629=17R/629.
Если R=34, то Х1=2, Х2≈0,92.
Тогда сторона квадрата равна 50 или 22,97(не удовлетворяет, так как R>a и касания кругом смежных сторон не возможно).
Значит площадь квадрата равна 50*50=2500.
ответ: S=2500см².
P.S. Проверка корня Х=2 при R=34: 34²=(34-4)²+(50-34)².1156=900+256!