Опустим из вершины В высоту ВE на основание AD.
Из вершины С высоту CF. Нижнее основание делится на три отрезка, причем АЕ=FD, а EF=ВС, обозначим AE и FD как х, а EF и BC, как у.
ТОгда средняя линия равна KL=(BC+AD)/2=(x+2y+x)/2=x+y
Т.е. нам нужно найти длину отрезка ED, который равен x+y
Рассмотрим треугольник EBD, он прямоугольный и его угол BDE=60, тогда угол EBD=90-60=30.
Как мы знаем, что катет противолежалий углу 30 градусов равен половине гиппотенузе. Гиппотенуза у нас BD=4, тогда ED=KL=2
ответ: KL=2
−5,16s+10+7,2=(−16+7,2)−7,16s
-5,16s + 17,2 = -8,8 - 7,16s
-5,16s + 7,16s = -8,8 - 17,2
2s=-26
s= -13