Объяснение:
EB=EF, значит треугольник EBF - равнобедренный.
и угол EBF равен углу EFB.
Углы ВАС и ВСА равны, т.к. треугольник АВС равнобедренный, значит можно записать, что угол АСВ равен (180°-∠АВС) / 2
Угол CFE и EFB смежные, и в сумме 180°
Значит ∠EFC = 180°-∠EFВ = 180°-∠EBF = 180°-∠АВС
Биссектриса делит угол EFC пополам, значит
∠KFC = 1/2 EFC = (180°-∠АВС) / 2 = ∠АСВ
Поскольку ∠АСВ=∠KCF=∠KFC, то треугольник СKF имеет равные углы при основании CF следовательно он равнобедренный.
А в равнобедренном треугольнике СКF KC=KF, что и требовалось доказать.
При пересечении двух прямых можно
получить 4 равных угла по 90°, если
прямые перпендикулярны,либо две
пары вертикальных углов.
Если прямые перпендикулярны,
то сумма любых двух углов будет
равна 90°+90°=180°. То есть меньше,
чем 296°. Значит прямые не
перпендикулярны.
При пересечении двух прямых
образовано две пары вертикальных
углов : 2 острых угла и 2 тупых угла.
/_1 =/_3 < 90°; /_2 = /_4> 90°
Сумма двух острых углов меньше 180°
<296°.
Сумма острого и тупого углов равна
180°,
Значит, 296° в сумме можно получить,
только сложив тупые углы.
/_2 + /_4 =296°
/_2 = /_4 =296° : 2=148°
Острые углы смежные с тупыми :
/_1 = /_3 =180° - 148° = 32°
ответ: 32°, 148°, 32°, 148°