) Найдите углы ромба, если диагонали составляют с его стороной углы, один из которых равен 32 градусам. 2) Угол между диагоналями прямоугольника равен 60 гродусам. Докажите, что при пересечении диагоналей образуется равносторонний треугольник.
1) Если один угол равнобокой трапеции 63°, то и другой, противоположный угол будет 63°. Сумма внутренних углов трапеции = 360°. Теперь, у нас есть две стороны, найдём остальные 2: 63+63=126° - это сумма двух углов 180-126=54 - это сумма двух других углов 54:2=27 - это два других угла И того, углы трапеции равны 63;63;27;27 2) А вот у прямоугольной же трапеции имеются два угла по 90°, а также, у нас есть ещё один угол, равный 63°. Находим 4-ый угол: 90+90+63+х=360 243+х=360 х=117° Углы прямоугольной трапеции равны 90;90;63;117
АF-высота, она образует прямоугольный треугольник АВF, уголF=90° АВ-гипотенуза, АF=1/2×AВ(половине гипотенузы), значит, угол(противолежащий) В=30° или 45°( т.к. по теореме в прямоугольном треугольнике напротив этих углов лежит сторона равная половине гипотенузы). если В=45°, значит, уголА=45°, т.к. сумма острых углов треугольника =90°,FB=4,5 следовательно, проверка: по теореме Пифагора: АВ^2=АF^2+FB^2 81=20,25+FB^2 FB^2=60,75 FB=7.79422 FB≠AF значит, угол В=30° А=180-30=150°(сумма смежных углов ромба =180°).
Теперь, у нас есть две стороны, найдём остальные 2:
63+63=126° - это сумма двух углов
180-126=54 - это сумма двух других углов
54:2=27 - это два других угла
И того, углы трапеции равны 63;63;27;27
2) А вот у прямоугольной же трапеции имеются два угла по 90°, а также, у нас есть ещё один угол, равный 63°. Находим 4-ый угол:
90+90+63+х=360
243+х=360
х=117°
Углы прямоугольной трапеции равны 90;90;63;117