Стороны треугольника равны 1 и 2, а угол между ними равен 60◦ . Через центр вписанной окружности этого треугольника и концы третьей стороны проведена окружность. Найдите ее радиус.
Пусть O — центр вписанной окружности треугольника ABC со сторонами AC = 1, AB = 2 и углом CAB, равным 60o. По теореме косинусов находим, что BC = $ \sqrt{3}$. Значит, треугольник ABC — прямоугольный, $ \angle$ACB = 90o, $ \angle$ABC = 30o. Поскольку O — точка пересечения биссектрис треугольника ABC, то
1.Основными геометрическими фигурами на плоскости являются точка и прямая. 2.Положение точки на каждом из лучей задается ее координатой. Чтобы отличить друг от друга координаты на этих лучах, условились ставить перед координатами на одном луче знак « + », а перед координатами на другом луче знак « — ». 3.В месте раздела плоскостей прерывается область интегрирования по площади и неопределенный интеграл вырождается в определенный. Разбиение разрывает непрерывную корреляцию между функцией и аргументами кривой, проходящей по обеим плоскостям, если вторая производная - не ноль.
3) найдем СВ....используем теорему синусов...к/sin 90=СВ/sina....отсюда: (синус 90 градусов равен 1)...СВ=к*sina...далее, по следствию из т. Пифагора найдем АС: ... теперь находим АД, используя подобие треугольников.... .... значит, АД=
4) в параллелограмме высоты будут равные....найдем одну из них, используя метод площадей...т.е. S=a*h....S=a*b*sina...(a и b - стороны....синус альфа - синус углы между этими сторонами....h - высота)...прировняв два метода нахождения площади, получим, что h=2 корень из 2
1) сторону АС найдем через определение тангенса угла альфа...т.е. tga=CB/AC...AC=CB/tga=5/tga
2) используем основное тождество, чтобы найти косинус (через него найдем тангенс)...
Пусть O — центр вписанной окружности треугольника ABC со сторонами AC = 1, AB = 2 и углом CAB, равным 60o. По теореме косинусов находим, что BC = $ \sqrt{3}$. Значит, треугольник ABC — прямоугольный, $ \angle$ACB = 90o, $ \angle$ABC = 30o. Поскольку O — точка пересечения биссектрис треугольника ABC, то
ответ
1.