У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
1. Основания трапеции cb и ad параллельны. Диагональ db является секущей для параллельных cb и ad. Углы cbd и bda - накрест лежащие при пересечении параллельных прямых секущей. Значит, <cbd = <bda. 2. Рассмотрим треугольник abd. В нем известны оба катета ab, bd и основание ad. Треугольник прямоугольный, поскольку квадрат одной стороны этого треугольника равен сумме квадратов двух других сторон: ad² = bd² + ba² 15² = 12²+ 9² 225 = 225 3. Как уже доказано выше, <cbd = <bda. Поэтому будем находить синус, косинус и тангенс угла bda в прямоугольном треугольнике abd: sin bda = ab/ad = 9/15 = 3/5 cos bda = bd/ad = 12/15 = 4/5 tg bda = ab/bd = 9/12 = 3/4