Согласно известному мне определению, четырехугольник - это частный случай многоугольника, который по определению всегда весь лежит в одной плоскости. Однако можно догадаться, что речь идет просто о 4 точках с проведенными отрезками, тогда все решается в одно действие. Пусть отрезки AC и BD пересекаются в точке О. Тогда, по соответствующей теореме, через пересекающиеся прямые AC и BD проходит какая-то плоскость. Прямые AC и BD целиком лежат в этой плоскости, значит, и лежащие на них точки лежат в ней: A, C, B, D. Таким образом, существует плоскость, проходящая через все вершины четырехугольника.
Биссектриса трапеции отсекает от него равнобедренный треугольник, а если биссектриса является еще и диагональю, то боковые стороны равнобедренного треугольника равны нижнему основанию (т.к. биссектриса тупого угла). Итак, имеем равнобокую трапецию с основаниями 12 и 20, боковыми сторонами по 20 см. Можем найти теперь высоту. Перпендикуляры из вершин трапеции, делят нижнее основание на отрезки 4+12+4=20 Из прямоугольного треугольника с катетом 4 и гипотенузой 20, вычислим неизвестный катет (высоту трапеции) h²=20²-4² h=4√6 S=
Пусть отрезки AC и BD пересекаются в точке О. Тогда, по соответствующей теореме, через пересекающиеся прямые AC и BD проходит какая-то плоскость. Прямые AC и BD целиком лежат в этой плоскости, значит, и лежащие на них точки лежат в ней: A, C, B, D. Таким образом, существует плоскость, проходящая через все вершины четырехугольника.