
∠2 и ∠6 являются соответственными углами при пересечении прямых a и b секущей c;
∠2 = ∠6, поэтому a║b.
∠2 = ∠4, как вертикальные углы при a∩c, ∠4 = 63°.
∠4 = ∠8, как соответственные углы при a║b и секущей с, ∠8 = 63°.
∠1 и ∠2 являются смежными углами при a∩c, сумма смежных углов равна 180°;
∠1 = 180°-∠2 = 180°-63° = 117°.
∠1 = ∠3, как вертикальные углы при a∩c, ∠3 = 117°.
∠3 = ∠7, как соответственные углы при a║b и секущей c, ∠7 = 117°.
∠5 = ∠7, как вертикальные углы при b∩c, ∠5 = 117°.
ответ: ∠1 = ∠3 = ∠5 = ∠7 = 117°; ∠4 = ∠8 = 63
Объяснение:
75 см²
Объяснение:
Прямоугольные треуг-ки ВНС и АН1С подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. В нашем случае углы АН1С и ВНС прямые, а угол С - общий. Для подобных треугольников можно записать отношение сходственных сторон:
ВН:АН1=10:12, k=5/6, СН:СН1=5:6, отсюда
CH1=6CH:5
В прямоугольном треуг-ке АН1С по теореме Пифагора находим АС:
АС²=AH1²+CH1²
Т.к. в равнобедренном треуг-ке АВС высота ВН, проведенная к основанию, является также и медианой, то СН=1/2АС, и выражение CH1=6CH:5 примет такой вид:
СН1=3АС:5.
Это значение для СH1 будем использовать в вычислении по теореме Пифагора:
АС²=12² + 9AC²/25
AC² - 9AC²/25=144
16AC²=3600
AC² = 225
AC=15 см
S ABC = 1/2AC*BH=7,5*10=75 см²
3) проводиш з верхньої точки лінії до нижньої і правої
1) лінія з верхньої до 2 нижніх