Рассмотрим треугольники АОВ и СОД. Если у них указанные в условии углы равны, то стороны АО = ВО = СО = ДО как радиусы. Значит треуг. АОВ = СОД по 1 признаку. Из равности треугольников следует равность сторон АВ и СД
Длина дуги пропорциональна радиусу и величине соответствующего центрального угла. В нашем случае радиус один и тот же, а центральные углы равны между собой. Следовательно и дуги, на которые опираются центр. углы равны. Что и требовалось доказать. Формула р=пи*r*n/180, где р - длина дуги, n - величина центр. угла, r - радиус окружности..
Рассмотрим треугольники АОВ и СОД. Если у них указанные в условии углы равны, то стороны АО = ВО = СО = ДО как радиусы. Значит треуг. АОВ = СОД по 1 признаку. Из равности треугольников следует равность сторон АВ и СД
Длина дуги пропорциональна радиусу и величине соответствующего центрального угла. В нашем случае радиус один и тот же, а центральные углы равны между собой. Следовательно и дуги, на которые опираются центр. углы равны. Что и требовалось доказать. Формула р=пи*r*n/180, где р - длина дуги, n - величина центр. угла, r - радиус окружности..
P1/P2=24/36
пусть S1=x, тогда S2=x+10
S1/S2=k² ⇒S1/S2=(2/3)²=4/9
x/x+10=4/9
9x=4x+40
5x=40
x=8
x+10=18
S1=8 см ²
S2=18 см ²