Дано:
<AOB и <COD
<COD внутри <AOB
AO ┴ OD; CO ┴ OB;
<AOB - <COD = 90°
Найти: <AOB и <COD.
Решение
Т.к . AO ┴ OD; CO ┴ OB,
то <AOD = 90; <COB = 90°.
<COD = <AOD - <AOC
<COD = <COB - <DOB
<COD = 90° - <AOC
<COD = 90° - <DOB
Получим
<AOC = 90° - <COD
<DOB = 90° - <COD
Следовательно <AOC = <DOB
2) По условию: <AOB - <COD = 90°
Но если от всего угла <AOB отнять <COD, то останутся два равных угла <AOC и <DOB, значит, это их сумма равна 90°.
<AOC + <DOB = 90° =>
<AOC = <DOB = 90°/2 = 45°
3) <COD = 90° - <DOB
<COD = 90° - 45°=45°
4) <AOB = <AOC + <DOB + <DOB
<AOB = 45° + 45° + 45° = 135°
ответ: <AOB - 135°; <COD =45°.
Вертикальные углы равны.
Сумма смежных углов равна 180 градусов.
Если 1 угол равен 30 градусам, то вертикальный с ним угол равен тоже 30 градусам, смежный равен 150 градусам. Вертикальный смежному 150 градусов.
Дано:
пересекающиеся прямые.
угол 1=30 градусов
Найти: углы 2;3;4.
Решение: угол 3 = угол 1 = 30 градусов(вертикальные углы)
угол 2 = угол 4 = 180 градуов минус угол 1(смежные углы) = 180 градусов минус 30 градусов = 150 градусов
ответ: Угол 2= 150 гр.
Угол 3= 30 гр.
Угол 4 = 150 гр.
если треугольник то
Объяснение:
угол1=45, угол2=45, угол3=90