Найдите периметр треугольника, у которого длины сторон (в сантиметрах) выражаются последовательными нечетными числами, а один из углов вдвое больше суммы остальных.
1)Пусть С- прямой угол в прямоугольном треугольнике АВС, тогда СН-высота проведенная к гипотенузе, СМ- биссектриса,проведенная к гипотенузе. 2)По условию сказано, что угол между СМ и СН равен 15 градусов. 3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам. 4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника). 5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника) 6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см 7) По теореме Пифагора СВ= 3 корня из 3 ответ: 3 и 3корня из 3
1. Проводим луч b с началом в точке А перпендикулярно прямой ВС. b∩BC = H. На луче b по другую сторону от прямой ВС откладываем отрезок НА' = AH. Точка A' построена.
2. Проводим луч МО. На этом луче за точку О откладываем отрезок ОМ₁= МО. Точка М₁ построена. М₁(- 4 ; 3)
3. Обозначим гипотенузу с, r - радиус вписанной окружности. Для прямоугольного треугольника справедлива формула: r = p - c, где р - его полупериметр. p = r + c = 3 + 12 = 15 см
Вариант 2.
1. Проводим луч АС. На этом луче за точку С откладываем отрезок СА₁= АС. Точка А₁ построена.
2. Проводим луч с началом в точке D, перпендикулярно оси Ох. Пусть он пересечет ос Ох в точке Н. На это луче за точку Н откладываем отрезок HD₁ = DH. Точка D₁ построена. D₁(- 3 ; - 2).
3. Центральный угол в два раза больше вписанного, опирающегося на ту же дугу. Пусть вписанный ∠АСВ = х, тогда ∠АОВ = 2х. 2x - x = 50 x = 50 ∠АСВ = 50° ∠АОВ = 100°
2)По условию сказано, что угол между СМ и СН равен 15 градусов.
3)По свойству биссектрисы угол АСМ= углу МСВ=45 градусов(т.к С по условию 90),значит, так как угол НСМ=15 градусов, а угол НСМ+угол АСН=45 градусов, то угол АСН равен 30 градусам.
4)Так как СН высота, то угол СНА равен 90 градусов, следовательно угол САН=60 градусов( по теореме о сумме углов треугольника).
5)Значит, в треугольнике АВС угол В = 180-90-60=30 градусов( по теореме о сумме углов треугольника)
6) Так как в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы, то АС=3 см
7) По теореме Пифагора СВ= 3 корня из 3
ответ: 3 и 3корня из 3