проведем через вершину сечение, перпендикулряное стороне основания. в нем построим треугольник, стороны которого - апофема d (высота боковой грани), высота пирамиды (перпендикуляр из s на основание, другой конец этого отрезка - центр квадрата в основании), и отрезок, соединяющий центр квадрата с серединой боковой стороны, он равен половине стороны основания а. нам задана высота этого треугольника, проведенная к гипотенузе d, она равна 2. (эта высота перпендикулярна 2 прямым в плоскости бокового ребра - апофеме и стороне основания, то есть - это перпендикуляр ко всей плоскости боковой грани.)
в этом треугольнике нам задан так же угол в 60 градусов.
далее все очевидно
d*cos(60) = a/2; sбок = 4*d*a/2 = 4*(a/2)^2/cos(60);
a/2 = 2/sin(60); (a/2)^2 = 4/(3/4) = 16/3;
sбок = 2*4*16/3 = 128/3
площадь основания в 2 раза меньше (sбок*cos( это 64/3. а вся площадь поверхности будет 64.
1) Находим длину AB, суммируя проекции сторон AC и BC:
A
B
=
15
+
27
=
42
2) Проводим высоту из точки C в точку H. Отрезок AH будет равен проекции стороны АС, т.е. 15. 3) Проводим перпендикуляр из середины AB в точку F. 4) Находим длину половины AB, путем деления пополам:
A
B
2
=
42
2
=
21
5) Находим расстояние от середины AB до точки H:
A
B
2
−
A
H
=
21
−
15
=
6
проекции находим AF:
A
F
=
45
⋅
6
27
=
10
7) Находим другую часть, FD, путем вычитания:
F
D
=
C
D
−
A
F
=
45
−
10
=
35
---ответ: на 10 и 35
Объяснение: