У ромба все стороны равны, поэтому т.к. Р = 4а, где а - сторона ромба, то сторона ромба равна 40 : 4 =10 (см).
Диагонали ромба перпендикулярны и делятся точкой пересечения пополам, значит, получаем 4 равных прямоугольных треугольника, у которых катеты - это половинки диагоналей, а гипотенуза - сторона ромба. Т.к. одна из диагоналей ромба равна 12 см, то ее половинка равна 6 см, тогда по теореме Пифагора второй катет (равен половине второй диагонали) равен: √(10² - 6²) = √(100 - 36) = √64 = 8 (см). Следовательно, вторая диагональ равна 2 · 8 = 16 (см) ответ: 16 см.
Расстояние от точки до прямой находится на перпендикуляре к прямой))) основания трапеции параллельны, т.е. для них перпендикуляр общий... этот перпендикуляр будет состоять из двух высот для треугольников, опирающихся на основания трапеции... одно основание меньше, другое больше --- это дано))) треугольники, опирающиеся на основания трапеции подобны --- у них равные углы (вертикальный и накрест лежащие при параллельных основаниях трапеции))) следовательно, существует коэффициент подобия, равный отношению сторон, в том числе и оснований трапеции... k = a / b, a < b ---> k ≠ 1 этот же коэффициент связывает и высоты подобных треугольников, и получим, что в меньшем треугольнике и высота меньше))) ЧиТД
Диагонали ромба перпендикулярны и делятся точкой пересечения пополам, значит, получаем 4 равных прямоугольных треугольника, у которых катеты - это половинки диагоналей, а гипотенуза - сторона ромба.
Т.к. одна из диагоналей ромба равна 12 см, то ее половинка равна 6 см, тогда по теореме Пифагора второй катет (равен половине второй диагонали) равен: √(10² - 6²) = √(100 - 36) = √64 = 8 (см). Следовательно, вторая диагональ равна 2 · 8 = 16 (см)
ответ: 16 см.