1) допустим известен катет а. Т.к. треугольник прямоугольный и равнобедренный, то оба катета равны по а. Значит
S = (ab)\2 = а²/2
в - гипотенуза, тогда по теореме Пифагора имеем в = √(а² + а²) = √2а²
=а√2
высота в равнобедренном треугольнике является медианой и делит гипотенузу пополам. Катет, высота и половина гипотенузы образуют прямоугольный равнобедренный треугольник, значит
h = а√2/2
2) допустим известна гипотенуза в.
тогда найдем катет: а² + а² = в², 2а² = в², а = √(в²/2) = в/√2 = в√2/2
высота : h = в/2
S = (ab)\2 = (в√2/2)²/2 = в²/4
3) допустим известна высота h
высота в равнобедренном треугольнике является медианой и делит гипотенузу пополам. Катет, высота и половина гипотенузы образуют прямоугольный равнобедренный треугольник, значит в/2 = h , тогда
в = 2h
найдем катет: а² + а² = h ², (из треугольника, см. предыдущее пояснение) , 2а² = h ², а = h√2/2
S = (ab)\2 = (h√2/2)²/2 = h/4
4) допустим известна площадь S
найдем катет: а²/2 = S, а² = 2S, а = √(2S)
т.к. треугольник прямоугольный, то (√2S²) + (√2S)² = в², в² = 4S, в = 2√S
В равнобедренном треугольнике две медианы могут быть взаимно перпендикулярны только к боковым сторонам. Медианы точкой пересечения делятся в отношении 2:1,считая от вершины. Обозначим эти части х и 2х. Тогда половина боковой стороны - гипотенуза прямоугольного треугольника. (√10/2)² = х² + (2х)². 10/4 = 5х². 20х² = 10. х = 1/√2, 2х = 2/√2. Треугольник с основанием тоже прямоугольный и с острыми углами по 45 градусов. Тогда основание равно 2*(2х*cos45°) = 2*((2/√2)*(√2/2)) = 2. Высота треугольника равна √((√10)²-(2/2)²) = √(10-1) = √9 = 3. Площадь треугольника равна (1/2)2*3 = 3 кв.ед.
Объяснение:
1) допустим известен катет а. Т.к. треугольник прямоугольный и равнобедренный, то оба катета равны по а. Значит
S = (ab)\2 = а²/2
в - гипотенуза, тогда по теореме Пифагора имеем в = √(а² + а²) = √2а²
=а√2
высота в равнобедренном треугольнике является медианой и делит гипотенузу пополам. Катет, высота и половина гипотенузы образуют прямоугольный равнобедренный треугольник, значит
h = а√2/2
2) допустим известна гипотенуза в.
тогда найдем катет: а² + а² = в², 2а² = в², а = √(в²/2) = в/√2 = в√2/2
высота : h = в/2
S = (ab)\2 = (в√2/2)²/2 = в²/4
3) допустим известна высота h
высота в равнобедренном треугольнике является медианой и делит гипотенузу пополам. Катет, высота и половина гипотенузы образуют прямоугольный равнобедренный треугольник, значит в/2 = h , тогда
в = 2h
найдем катет: а² + а² = h ², (из треугольника, см. предыдущее пояснение) , 2а² = h ², а = h√2/2
S = (ab)\2 = (h√2/2)²/2 = h/4
4) допустим известна площадь S
найдем катет: а²/2 = S, а² = 2S, а = √(2S)
т.к. треугольник прямоугольный, то (√2S²) + (√2S)² = в², в² = 4S, в = 2√S
h это пологина гипотенузы, значит h =(2√S)/2 = √S