Прямая касается двух окружностей, точки касания удалены от центров на радиусы. Так как радиусы равны, точки касания равноудалены от центров и лежат на прямой, параллельной линии центров.
Окружности касаются внешним образом, точка касания лежит на линии центров, расстояние между центрами равно двум радиусам. Радиус, поведенный в точку касания, перпендикулярен касательной и образует прямоугольный треугольник, в котором линия центров - гипотенуза. Катет равен половине гипотенузы, значит он лежит против угла 30.
Искомый угол является накрест лежащим при параллельных и равен 30.
Итоговая контрольная работа(Решите хотя бы три)
1. Основание конуса совпадает с одним из оснований цилиндра, а вершина конуса с центром
другого основания цилиндра. Во сколько раз площадь осевого сечения цилиндра больше
площади осевого сечения конуса?
2. Все рёбра треугольной пирамиды равны 1. Рассмотрите сечение этой пирамиды плоскостью,
параллельной двум противоположным (скрещивающимся) рёбрам пирамиды. Как называется
многоугольник, получившийся в сечении? Чему равен его периметр? В каких пределах
меняется его площадь?
3. Найдите радиус шара, касающегося трёх граней единичного куба и вписанного в этот куб
шара.
4. Отрезок, длина которого равна 1, образует угол в 45° с одной из гранью прямого двугранного
угла, и он же образует угол в 30° с другой гранью этого же двугранного угла. Найдите длину
проекции этого отрезка на ребро двугранного угла.
5. Высота пирамиды равна 1, все двугранные углы при основании равны 45°, периметр
многоугольника, расположенного в основании, равен 2р. Найдите площадь этого
многоугольника. При каких р такая пирамида возможна?
6. В основании треугольной пирамиды АВСD лежит правильный треугольник АВС. Найдите его
стороны, если известно, что все боковые грани этой пирамиды равновелики и ВD = СD = 1,
АD = 2
Объяснение: