(Рисунок 2) Задача: Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.
Решение:Углы 1 и 2 внутренние односторонние, их сумма равна 180градусов, т. е.
1∠ + ∠ 2 = 180градусов. (1)
Обозначим градусную меру угла 1 через х. По условию ∠ 2 - х = 30градусов, или ∠ 2 = 30градусов + x.
Подставим в равенство (1) значения углов 1 и 2, получим
х + 30градусов + х = 180градусов.
Решая это уравнение, получим х = 75градусов, т. е.
∠ 1 = 75градусов, a ∠ 2 = 180градусов - 75градусов = 105градусов.
Рисунок 1. Я просто нарисовала и нужно доказать параллельность KC и MQ.
вторая сторона равна по теореме Пифагора корень((3x)^2-(корень(2))^2)==корень(9x^2-2)
высота треугольника, стороны которого стороны прямогоульника и диагональ
равна по теореме Пифагора
корень((корень(2))^2-x^2)=корень(2-x^2)
площадь прямоугольника равна
2* 1/2* 3х* корень(2-x^2) (сумма двух равных реугольников, площадь треугольника равна половине произведения высоты на основание(в данном случае это диагональ прямоугольника))
или корень(2)*корень(9x^2-2)
составляем уравнение
корень(2)*корень(9x^2-2)=2* 1/2* 3х* корень(2-x^2)
3х* корень(2-x^2)=корень(2)*корень(9x^2-2)
9x^2*(2-x^2)=2*(9x^2-2)18x^2-9x^4=18x^2-4
9x^4=4
x^4=4/9
x=корень(2/3)
3x=3*корень(2/3)=корень(6)