Расстояние от точки до плоскости равно длине перпендикулярного к ней отрезка.
Обозначим вершины ромба АВСD.
Точка L удалена от прямых, содержащих стороны ромба, на одинаковое расстояние. ⇒ наклонные, проведенные из L перпендикулярно к сторонам ромба, равны, и по т. о з-х перпендикулярах равны их проекции.
Эти проекции равны половине диаметра вписанной в ромб окружности, который равен высоте ВН ромба. Центр окружности лежит на пересечении диагоналей ромба.
ВН=АВ•sin 45°=(a√2)/2=a/√2.
Радиус ОK=а/2√2.
По т.Пифагора из ∆ LOK катет LO=√(LK²-OK²)
LO=√(b²- a²/8) Домножив в подкоренном выражении числитель и знаменатель на 2, получим LO=√[2•(8b²-a²):16]=[√2•(8b²-a²)]:4
Пусть диагонали параллелограмма ВД И СК пересекаются в точке О. Они делятся в точке О пополам. Найдем середину отрезка СК, это будет и серединой отрезка ВД.
Середина отрезка СК равна полусумме соответствующих координат точек С и К.
т.е. х=((7-3)/2))=2; у= ((7-1)/2)=3
Значит, О(2;3)
Теперь, зная координаты середины точки О, которая является серединой ВД, найдем координаты точки Д.
Пусть Д(х;у)
(х+1)/2=2, откуда х+1=4, х=3
Аналогично (у+5)/2=3, откуда у+5=6, значит, у=1.
Итак, Д(3;1)
ответ Д(3;1)
Удачи.
360*7/18=140 (град) - дуга
Вписанный угол равен половине дуги, на которую опирается:
0,5*140=70 (град)