ВОТ
Объяснение:
Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.
Далее, внешний угол при вершине ЭТОГО (отрезанного) треугольника равен 2*36° = 72°, то есть второй треугольник тоже равнобедренный. То есть биссектриса угла при основании делит треугольник на два равнобедренных треугольника.
Если обозначить длину биссектрисы L, основание a, боковую сторону b, и отрезок от вершины (противоположной основанию) до конца биссектрисы x, то получается
x = L = a; (одна из сторон уже найдена, основание a = L = √20)
По свойству биссектрисы
b/a = x/(b - x); то есть b/a = a/(b - a); или (b/a - 1)*(b/a) = 1;
(b/a)^2 - (b/a) - 1 = 0;
b/a = (√5 + 1)/2;
если подставить a = 2√5; получится
b = 5 + √5;