Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см
Объяснение:
6(2)
Дано: ромб
диагонали ромба d₁ = 16 дм; d₂ = 30 дм
Найти: сторону ромба а - ?
Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре, а все стороны ромба равны. значит можем найти сторону
ромба
4а² = d₁² + d₂²
4а² = 16²+30²=256+900=1156
а² = 289; а = 17 (дм)
7)
Дано: стороны прямоугольника а = 16 см, с = 91 см
Найти: диагональ прямоугольника d - ?
диагональ прямоугольника делит прямоугольник на два прямоугольных треугольника. берем один из них и видим, что диагональ d - это гипотенуза прямоугольного треугольника со сторонами 60 и 91. тогда по теореме Пифагора
d² = а² + с²
d² = 16² + 91² = 3600 + 8281 = 11881
d = 109 (см)
9)
окружность описана вокруг квадрата.
диаметр окружности d = 1.4 (м); радиус r = 0.7(м)
сторона квадрата а = 1 (м)
сторона квадрата и диаметр описанной окружности связаны формулой
r= a/√2
проверяем 0,7 ≈ 1/√2
ответ - можно
стороны квадрата равны например 4 сантиметра а стргой стороны тоже 4 см