
1 б,в
2Вход
Теоретические материалы
Планиметрия
Глава 1. Треугольники
1.3. Три признака равенства треугольников
Определение
Два треугольника, которые можно совместить наложением, называются равными.
Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, <А=<А_1
Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.
Доказательство:
Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.
3
Логин
Пароль
Вход
Теоретические материалы
Планиметрия
Глава 1. Треугольники
1.3. Три признака равенства треугольников
Определение
Два треугольника, которые можно совместить наложением, называются равными.
Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.
Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.
Доказательство:
Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.
\boxtimes
Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.
4 х-основание
х+х+3+х+3=36
3х=30
х=10
10+3=13 см-боковые стороны
Начертить прямую произвольной длины.
С циркуля и линейки возвести перпендикуляр, равный данной высоте.
( Это одно из простейших построений, Вы наверняка умеете его делать)
Обозначить основание перпендикуляра Н, а свободный конец - В. Это вершина треугольника.
Раствором циркуля, равным длине одной из сторон, из В, как из центра, провести полуокружность до пересечения с первой прямой.
Точку пересечения обозначить А.
Соединив А и В, получим сторонуАВ.
Точно так же отложить вторую сторону раствором циркуля, равным ее длине.
Обозначить точку пересечения дуги с прямой С и соединить с В.
Можно несколько иначе построить вторую сторону.
От А отложить длину второй известной стороны.
Свободный конец обозначить С.
Соединив С и В, получим сторону ВС.
Треугольник по двум сторонам и высоте построен.
Подробнее - на -
AM=MD=a
BC=AM, BC||AM => ABCM - параллелограмм
CM=AB=a
Медиана CM равна половине стороны, следовательно проведена из прямого угла, ACD=90.