Три медианы пересекаются в одной точке всегда внутри треугольника. Эта точка является центром тяжести треугольника. Эта точка делит каждую медиану в отношении 2:1 (считая от вершины). ВО=1/2ОВ1 ОВ1=3см , АО=СО=1/2 ОА1=1/2ОС1 ОА1=2,5см
Треугольник делится тремя медианами на шесть равновеликих треугольников. Найдем площадь одного из них. рассмотрим тр-к В1АО -прямоугольный, т.к. АВС-равносторонний ВВ1-медиана, высота, биссектриса ОВ1=3см ОА1=5см находим АВ1 =(sqrt 5^2-3^2)=4cm
S=1/2 a*b S(B1AO)=1/2 B1A*OB1 =6cm^2
S(ABC)=6S(B1AO)=36cm^2
или S(ABC)=2S(ABB1) S(ABB1)= 1/2 AB1*BB1=1/2 *4*9=18cm^2 S(ABC)=36cm^2
Давайте без точки О. 1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К. 2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС. 3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Три медианы пересекаются в одной точке всегда внутри треугольника. Эта точка является центром тяжести треугольника. Эта точка делит каждую медиану в отношении 2:1 (считая от вершины). ВО=1/2ОВ1 ОВ1=3см , АО=СО=1/2 ОА1=1/2ОС1 ОА1=2,5см
Треугольник делится тремя медианами на шесть равновеликих треугольников. Найдем площадь одного из них. рассмотрим тр-к В1АО -прямоугольный, т.к. АВС-равносторонний ВВ1-медиана, высота, биссектриса ОВ1=3см ОА1=5см находим АВ1 =(sqrt 5^2-3^2)=4cm
S=1/2 a*b S(B1AO)=1/2 B1A*OB1 =6cm^2
S(ABC)=6S(B1AO)=36cm^2
или S(ABC)=2S(ABB1) S(ABB1)= 1/2 AB1*BB1=1/2 *4*9=18cm^2 S(ABC)=36cm^2