ответ: ∡ KMP = 120°.
Объяснение:
∠ RKM=∠MKP=52°/2=26°;
∠RPM=∠MPK=68°/2=34°;
∠KMP=180°-(26°+34°)=180°-60°=120°.
Для определения площади параллелограмма достаточно трёх точек.
Площадь равна модулю векторного произведения векторов АВ и ВС.
Находим векторы ВА и ВС.
ВА = (-3-2; 1-6) = (-5; -5),
ВС = (7--2; -1-6) = (5; -7)
Находим векторное произведение ВА и ВС.
i j k| i j
-5 -5 0| -5 -5
5 -7 0| 5 -7 = 0i + 0j + 35k - 0j - 0i + 25k = 0i + 0j + 60k.
Найдем модуль вектора:
|c| = √(cx² + cy² + cz²) = √(0² + 0² + (-60)²) = √(0 + 0 + 3600) = √3600 = 60
Найдем площадь параллелограмма:
S = 60.
130
Объяснение:
угол КМР =52/2=26, ТК КМ- биссектриса.
угол МРК=68/2=34,тк. РМ- биссектриса.
Рассмотрим треугольник КМР. ТК сумма углов треугольника равна 180, то угол М=180-(26+34)=120. ответ :120°.