Если координаты векторов пропорциональны, то векторы коллинеарны, найдем координаты АВ и СД и проверим данное условие.
Над векторами везде надо ставить стрелочки. У меня нет такой возможности. Поэтому не забудьте поставить.
Координаты вектора АВ ищем, вычитая из координат конца т.к. точки В координату начала вектора, т.е. точки А. т.е.
АВ(8;-7;10)
Аналогично СД(-6;-7;-3)
Видно, что координаты не пропорциональны. т.е. не выполняется условие коллинеарности 8/-6=-7/-7=10/-3.
ответ. Векторы не коллинеарны.
ЇЇ розміри -dsin α*dcos α = d²sin2α/2.
Площа бічної поверхні призми складає з 3 граней, тоді Sбок = (d²sin2α/2)*3 = 3d²sin2α/2.
2) Якщо кожне ребро дорівнює √2 см, то бічні грані - рівносторонні трикутники. Апофема дорівнює √2*cos 30 = √2*√3/2.
Площа бічної поверхні становить 4*(1/2)*√2*√2*√3/2. = 2√3,
Площа основи - (√2)² = 2.
Тоді повна поверхня дорівнює 2√3 + 2 = 2(√3 + 1).
3) Якщо в основі піраміди прямокутний трикутник, а бічні ребра однакові, то вісь піраміди проходить через середину гіпотенузи основи. Ця вісь становить одночасно апофемою бічної грані.
Тобто ця бічна грань вертикальна та її висота одночасно становить висотою піраміди.
Висота піраміди дорівнює 12*cos 30 = 12*(√3/2) = 6√3.