ТК. Внешний угол является смежным в внутренним углом тругольника, а сумма смежных углов =180 , то найдем соответсвующий ему внутренний: 180-40 = 140. Этот угол явлеятся углом при вершине, т.к . в треугольнике не может быть большо одного тупого угла. Следовательно найдем углы при основании. Тут есть два т.к. сумма углов труегольника = 180, а углы при основании равнобедренного треугольника равны). Либо второй т.к. внешний угол равен сумме двух внутренних, не смежных с ним углов, а углв при основаннии равнобедренного равны).
Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
ТК. Внешний угол является смежным в внутренним углом тругольника, а сумма смежных углов =180 , то найдем соответсвующий ему внутренний: 180-40 = 140. Этот угол явлеятся углом при вершине, т.к . в треугольнике не может быть большо одного тупого угла. Следовательно найдем углы при основании. Тут есть два т.к. сумма углов труегольника = 180, а углы при основании равнобедренного треугольника равны). Либо второй т.к. внешний угол равен сумме двух внутренних, не смежных с ним углов, а углв при основаннии равнобедренного равны).
ответ: 20 градусов.