<KBC=90-<EBK=90-60=30° В прямоугольном треугольнике ВКС сумма острых углов КВС и С равна 90°, значит <C= 90-<KBC=90-30=60° Поскольку противоположные углы параллелограмма равны между собой, то <A=<C=60°. В подобных по двум углам прямоугольных треугольниках ВКС и АЕВ углы КВС и АВЕ равны. <ABE=30°.Катет АЕ прямоугольного треугольника АЕВ, лежащий против угла в 30°, равен половине гипотенузы, значит АЕ = АВ : 2 = 16 : 2 = 8 см По теореме Пифагора в прямоугольном АЕВ находим ВЕ: BE=√AB²-AE²=√256-64=√192=√64*3=8√3 см
ответ: 1)Площадь треугольник вычисляется по формуле S=1\2b*h, где S - площадь треугольника, b - сторона треугольника, h - высота треугольника
Подставим имеющиеся данные в формулу. Получится: 40=1\2*10*h
40=10\2*h
40=5*h
h=40\5
h=8
ответ: высота треугольника равна 8 см.
2)S= 30*26*sin 150= 30*26*sin (150-30)= 30*26**sin 30= 30*26* 1/2= 16*26= 390
3) 22*11/2=121
4)Пусть высота, проведенная к стороне AB пересекает AB в точке M;
Треугольник CMB прямоугольный с катетом СМ = 11, равным половине гипотенузы BC = 22;
Отсюда угол MBC = 30°;
Опустим высоту AN на сторону BC;
В треугольнике ABN катет AN лежит напротив угла в 30° и, значит, тоже равен половине гипотенузы AB;
AN = 14 /2 = 7 см.
Объяснение: