4. В треугольнике ABC проведена биссектриса CF. На ней отмечена точка O так, что F O ·F C = = F B2 . BO пересекает AC в точке E. Докажите, что F B = F E.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Опустим высоту ВН на сторону АD параллелограмма АВСD, тогда образуется прямоугольный ∆ АВН, в котором острый угол А = 45°, а значит, острый угол В в нем (АВН) = 90° - 45° = 45° (по теореме о сумме острых углов прямоугольного ∆). Т.к. 2 угла ∆ АВН равны, то он р/б, а именно: |АН| = |ВН|. Получается, что ∆ АВН - прямоугольный и р/б, тогда по теореме Пифагора |АВ|² = |АН|² + |ВН|², а значит, (7√2)² = 2|АВ|², то есть 49*2 = 2|АВ|². Получаем, что 49 = |АВ|², а значит, |АВ| = √49 = 7, т.к. корень арифметический (длина > 0). А т.к. |ВН| = |АВ| = 7, то |ВН| = 7. ответ: 7.
Точка B(3,-2,2)
а) параллельна плоскости Oyz.
Уравнение плоскости, параллельной плоскости yOz, имеет вид: Ax + D = 0.
Подставляя в него координаты точки A, получим 3A + D = 0, или D = -3A.
Подставляя это значение в Ax + D = 0, получим
Ax - 3A = 0,
а сокращая на A, будем иметь окончательно
x - 3 = 0.
б) перпендикулярна оси Ox.
Так как плоскость перпендикулярна оси Ox, то она параллельна плоскости yOz, а потому ее уравнение имеет вид
Ax + D = 0.
Подставляя в это уравнение координаты точки A, получим, что D = -3A. Это значение D подставим вAx + D = 0 и, сокращая на A, будем иметь окончательно x - 3 = 0.
Подробнее - на -