Половина высоты относится к радиусу вписанной окружности основания как tg(a) tg(a) = h/2/r r = h/(2tg(a)) В равностороннем треугольнике центр вписанной окружности - это точка пересечения медиан, биссектрис и высот. Медианы делятся точкой пересечения как 2 к 1 начиная от угла, и которого построена медиана. Поэтому полная длина медианы равна 3r Рассмотрим прямоугольный треугольник, равный половине основания. Обозначим сторону основания x. Тогда по Пифагору x² = (x/2)² + (3r)² 3/4*x² = 9r² x² = 12r² x = 2√3*r = 2√3*h/(2tg(a)) = h√3/tg(a) Площадь основания S = 1/2*x*3r = 1/2*h√3/tg(a)*h/(2tg(a)) = √3/4*(h/tg(a))² И объём V = 1/3*S*h = 1/3*√3/4*(h/tg(a))²*h = 1/(4√3)*h³/(tg(a))² на картинке слева сечение пирамиды в вертикальной плоскости, справа - основание.
Тебе дан равнобедренный треугольник, у равнобедренного треугольника 1 боковая сторона = второй, боковая сторона ас=12 см, значит св=12. Почему св= 12? Так как угол С 120 градусов, значит он больше 90 и его нужно указать вверху треугольника. Далее проводишь биссектрису CH. Чтобы найти биссектрису должен(а) записать соотношение AC/CH=CH/CB и выражаешь CH(так как записана 2 раза то у тебя получается квадрат биссектрисы). CH(в квадрате)=ас*св= 12*12=144 см(это бисстектр в квадрате) CH=12 см Так как CH биссектриса, то она делит угол на 2 равные части, то есть 120:2=60. Мы знаем, что биссектриса образовывает угол в 90 градусов, угол H= 90, найдем угол А. Сумма углов треугольника = 180, чтобы найти угол А надо из 180 вычесть 90 и 60= 30 градусам. Катет лежащий против угла в 30 градусов равен половине гипотенузы CH= 12:2 = 6 см
2х+3х+5х=180
х=18
2х=36
3х=54
5х=90
ответ:36;54;90