Відповідь: 60°.
Пояснення:Дано: коло з центром в точці О. AM i АК - дотичні (А поза колом).
М і К - точки дотику. ОА - перетинає коло в точці N. N - середина ОА.
Знайти: ∟MAK.
Розв'язання:
Виконаємо додаткові побудови: ОМ i ОК - радіуси.
За властивістю дотичних до кола маємо:
ОМ ┴ МА; ОК ┴ АК та МА = АК.
Розглянемо ∆ОМА та ∆ОКА - прямокутні.
ОА - спільна сторона; ОМ = ОК - радіуси.
За ознакою piвностi прямокутних трикутників маємо: ∆ОМА = ∆ОКА,
звідси маємо: ∟MAO = ∟KAO.
За аксіомою вимірювання кутів маємо ∟MAK = ∟MAO + ∟KAO = 2∟MAO.
Розглянемо ∆ОМА - прямокутний.
∟OMA = 90°; ОМ = ON = R; N - середина ОА; якщо ON = NA i ON = R, тоді ОА = 2R.
За властивістю катета, який лежить навпроти кута 30°, маємо, якщо ОМ = R
та ОА = 2R, тоді ∟MAO = 30°. Звідси маємо ∟MAK = 30° • 2 = 60°.
Biдповідь: 60°.
KK₁ = 3 ед.
Объяснение:
Дано: прямая АВ;
АК=КВ;
АА₁ ⊥ АВ; ВВ₁ ⊥ АВ; КК₁ ⊥ АВ.
АА₁ = 5; ВВ₁ = 11.
Найти: КК₁
Пусть А₁В₁= 2а.
Если две прямые перпендикулярны третьей, то они параллельны между собой.
АА₁ ⊥ АВ; ВВ₁ ⊥ АВ; КК₁ ⊥ АВ ⇒ АА₁ || ВВ₁ || КК₁.
Теорема Фалеса:
Если на одной из двух прямых отложить последовательно несколько равных между собой отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.
АК = КВ ⇒ А₁К₁ = К₁В₁ = а.
Рассмотрим ΔА₁АО и ΔОВВ₁ - прямоугольные.
Вертикальные угла равны.
∠1 = ∠2 (вертикальные)
⇒ ΔА₁АО ~ ΔОВВ₁ (по двум углам)
Составим пропорцию:
Пусть А₁О = 5х, тогда ОВ₁ = 11х
Составим уравнение:
⇒
Тогда
Рассмотрим ΔА₁АО и ΔК₁КО - прямоугольные.
∠1=∠2 (вертикальные)
⇒ ΔА₁АО ~ ΔК₁КО
Составим пропорцию: