Найдите объем параллелепипеда , если его основания имеет стороны , 3м и 4м , угол между ними 30градусов , а одна из диагоналей параллелепипеда имеет длину 6м и образует с плоскостью основания 30градусов
Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
1)основание параллелепипеда -это параллелограмм стороны a=3 м и b=4 м, угол между ними 30градусов
h-высота параллелепипеда
D=6 м диагональ параллелепипеда
площадь основания Sосн=ab*sin30
высота параллелепипеда h=D*sin30
тогда объем V=h*Sосн=D*sin30*ab*sin30=D*a*b*sin30^2=6*3*4*(1/2 )^2=18 м3