Задача на углы, образуемые при пересечении параллельных прямых секущей. Доказывать подобие треугольников не требуется.
Если у треугольника два угла равны, то этот треугольник — равнобедренный ( один из признаков равнобедренного треугольника).
Обозначим треугольник АВС. АВ=ВС (дано), ⇒угол ВАС=ВСА.
а) КМ||ВС. АС - секущая.
Угол КМА=ВСА - соответственные углы при пересечении параллельных прямых секущей равны. Угол КАМ=углу ВСА=КМА. Углы при основании АМ треугольника АКМ равны, следовательно
∆ АКМ - равнобедренный.
б) КМ||АС. АВ и ВС - секущие.
Угол ВКМ=углу ВАС, угол ВМК=углу ВСА ( соответственные углы при пересечении параллельных прямых секущей равны). Угол ВАС=ВСА ( дано), следовательно, угол ВКМ=углу ВМК. ∆ ВКМ - равнобедренный.
Пусть в ромбе АВСD сторона АD = 8,6 см, а угол ∠ВАD = 30°.
Опустим высоту ВН к основанию АD и рассмотрим получившийся при этом прямоугольный треугольник ΔАВН (∠ВНА = 90°). В нём катет ВН равен половине гипотенузы АВ по свойству катета, лежащего напротив угла ∠ВАD = 30°; а сторона АВ = АD = 8,6 см – по свойству сторон ромба. Получаем: ВН = 8,6 см : 2; ВН = 4,3 см.
Чтобы найти площадь ромба, найдём произведение длины основания ромба на длину его высоты, то есть S = АD · ВН или S = 8,6 см · 4,3 см; S = 36,98 см².
ответ: площадь ромба составляет 36,98 см².
Объяснение:
хмм.. не знаю, должно, наверно, правильно.