№2 ∠АСВ = 180° - ∠1 по свойству смежных углов,
∠DCB = 180° - ∠2 по свойству смежных углов,
∠1 = ∠2 по условию, значит и
∠АСВ = ∠DCB
AC = DC по условию,
ВС - общая сторона для треугольников АВС и DBC, ⇒
ΔАВС = ΔDBC по двум сторонам и углу между ними.
№3Треугольник AOB равен треугольнику COD. Поэтому ВО=OD, АО=ОС.
В ∆ ВОС и ∆ AOD стороны АО=ОС, BO=OD, углы ВОС=АОD как вертикальные.
∆ ВОС=∆ AOD по первому признаку равенства треугольников.
В равных треугольниках против равных углов лежат равные стороны -- ВС=AD.
Объяснение:
№1
Рассмотрим горизонтальную проекцию пирамиды. Пирамида правильная значит в основании правильный треугольник со стороной 4, и в сечении также правильный треуголник со стороной 1. Построим равносторонний треугольник АВС со стороной 4, затем в центре его параллельно сторонам первого треугольника построим треугольник MFN со стороной 1. Проведём боковые рёбра пирамиды АМ, BF,CN. Проведём высоту большего основания ВД. Отметим на ней точку О центр вписанной окружности. В неё проецируется вершина пирамиды О1. Причём , в правильном треугольнике ДО=1/3ВД=1/3*(( корень из( 16-4))=1,15. Боковая грань АМNC равнобедренная трапеция . Проведём в ней высоту NQ=КД=корень из (4-1,5)=1,32(по теореме Пифагора). Точка К расположена на пересечении MN и ВД. В плоскости перпендикулярной АВС и проходящей через ВД получим трапецию ДКFB. Точка О лежит на ДВ. Восстановим из неё перпендикуляр до пересечения с продолжением АК в точке О1. ДО1=1,76 найдём из подобия треугольников. Из точки К опустим перпендикуляр KG на ДВ. cos О1ДО=ДО/ДО1=0,653. Отсюда sin О1ДО=0,764.Тогда Н=KG=КД*sin О1ДО=1,32*0, 764=1,0.