М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DmitryKind98
DmitryKind98
20.05.2023 15:22 •  Геометрия

Сечение конуса плоскостью параллельно основанию и делит высоту конуса в отношении 4 : 7, считая от вершины. Какой частью является боковая поверхность отсечённого (меньшего) конуса по сравнению с полным (большим) конусом?

👇
Ответ:
bekker222
bekker222
20.05.2023
Добрый день! Давай решим задачу.

Для начала, нам нужно понять, что такое боковая поверхность конуса. Боковая поверхность - это поверхность, которая образует боковую сторону конуса, исключая его основание.

Допустим, высота большего конуса равна h (высота — это расстояние от вершины до основания). Как нам эту высоту использовать для построения отношения между высотой большего и меньшего конусов?

Дано, что секущая плоскость параллельна основанию конуса и делит его высоту в отношении 4:7. Если мы обозначим высоту меньшего конуса как h1, то получим:

h1/h = 4/7

Отсюда мы можем найти, какая часть высоты большего конуса соответствует высоте меньшего конуса. Выразим h1 через h:

h1 = (4/7) * h

Теперь мы можем рассмотреть боковые поверхности этих конусов. Обозначим боковую поверхность большего конуса как S, а меньшего - как S1.

Боковая поверхность конуса вычисляется по формуле: S = π * r * l, где r - радиус основания, l - образует показанную нам секущую плоскость по отношению к высоте.

Теперь давайте найдем l1 (длину образованной секущей плоскости меньшего конуса) через l (длину образованной плоскости большего конуса).

Согласно задаче, плоскость, параллельная основанию, делит высоту конуса в отношении 4:7. Значит:

l1/h1 = 4/7

Так как мы уже выразили h1 через h, можем подставить:

l1/[(4/7) * h] = 4/7

Далее, чтобы избавиться от дроби, можно умножить обе стороны уравнения на (4/7) * h:

l1 = (4/7) * l

Теперь у нас есть оба значения l и l1 для большего и меньшего конусов соответственно, и мы можем найти площади боковых поверхностей, используя формулу:

S = π * r * l

Так как радиусы оснований конусов одинаковы (по условию задачи), мы можем сделать вывод, что отношение площадей боковых поверхностей S1 и S равно отношению длин секущих плоскостей l1 и l:

S1/S = l1/l

Подставим значения l1 и l:

S1/S = (4/7) * l / l = 4/7

Итак, мы получили, что площадь боковой поверхности отсеченного (меньшего) конуса составляет 4/7 от площади боковой поверхности полного (большего) конуса.

Надеюсь, эта информация окажется полезной и понятной для тебя! Если у тебя есть еще вопросы, не стесняйся задавать.
4,7(10 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ