Боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему:
Sбок=1/2(p1+ p2) a
где р1 и р2 - периметры оснований, а- апофема ( высота боковой грани)
Полусумму периметров оснований найти очень просто. Каждое из них имеет 3 стороны, поэтому
3·(3+11):2= 42:2=21 см
Боковая грань правильной усеченной пирамиды - равнобедренная трапеция.
Апофему найдем по теореме Пифагора из треугольника, в котором боковаое ребро - гипотенуза, апофема и полуразность оснований трапеции - катеты.
h²=5² -( (11-3):2)²=5²-4²=9
h=√ 9=3 см
Sбок=21·3=63 см²
Длина окружности равна![C=2*\pi*R](/tpl/images/0144/1496/8e874.png)
Радиус окружности равен![R=\frac{C}{2*\pi}](/tpl/images/0144/1496/75231.png)
Площадь окружности равна
ответ: 51.59 кв.см